From: | To: |
The formula to calculate Lux (lx) is:
\[ E_v (\text{lx}) = \frac{I_v (\text{cd})}{d^2 (\text{m}^2)} \]
Where:
Candela (cd) is a unit of luminous intensity, representing the power emitted by a light source in a particular direction. Lux (lx) is a unit of illuminance, representing the amount of light that hits a surface. The conversion from candela to lux depends on the distance from the light source to the surface.
Let's assume the following values:
Using the formula:
\[ E_v = \frac{100}{2^2} \]
\[ E_v = \frac{100}{4} \]
\[ E_v = 25 \text{ lx} \]
The Illuminance (lx) is 25 lx.
Candela (cd) | Distance (m) | Illuminance (lx) |
---|---|---|
100 | 1 | 100.000 |
100 | 1.5 | 44.444 |
100 | 2 | 25.000 |
100 | 2.5 | 16.000 |
100 | 3 | 11.111 |
100 | 3.5 | 8.163 |
100 | 4 | 6.250 |
100 | 4.5 | 4.938 |
100 | 5 | 4.000 |
100 | 5.5 | 3.306 |
100 | 6 | 2.778 |
100 | 6.5 | 2.367 |
100 | 7 | 2.041 |
100 | 7.5 | 1.778 |
100 | 8 | 1.563 |
100 | 8.5 | 1.384 |
100 | 9 | 1.235 |
100 | 9.5 | 1.108 |
100 | 10 | 1.000 |
100 | 10.5 | 0.907 |
100 | 11 | 0.826 |
100 | 11.5 | 0.756 |
100 | 12 | 0.694 |
100 | 12.5 | 0.640 |
100 | 13 | 0.592 |
100 | 13.5 | 0.549 |
100 | 14 | 0.510 |
100 | 14.5 | 0.476 |
100 | 15 | 0.444 |
100 | 15.5 | 0.416 |
100 | 16 | 0.391 |
100 | 16.5 | 0.367 |
100 | 17 | 0.346 |
100 | 17.5 | 0.327 |
100 | 18 | 0.309 |
100 | 18.5 | 0.292 |
100 | 19 | 0.277 |
100 | 19.5 | 0.263 |
100 | 20 | 0.250 |